Generating Extremely Short Summaries from the Scientific Literature to Support Decisions in Primary Healthcare: A Human Evaluation Study

Abstrakt

Recent advancements in Natural Language Processing (NLP) using large pre-trained neural language models were recently used in various downstream tasks, such as text generation. In primary healthcare, such systems can generate very short summaries of research papers to save healthcare experts’ time when browsing through the literature search results, especially in scenarios where the communication with a patient can be supported by the latest scientific literature immediately at the point of care. A use case scenario was explored using recent abstracts and short summaries from the Sematic Scholar platform (baseline TLDR model - an acronym for “too long; didn’t read”). Four state-of-the-art models (OpenAI Davinci, OpenAI Curie, Pegasus-XSum, and BART-SAMSum) were used to generate short summaries. Ten healthcare experts evaluated five short summaries generated for each of the 20 included scientific paper abstracts. Results showed that Informativeness, Naturalness, and Quality were the highest in the baseline TLDR model with an average score of 4.87 (SD = 1.48), 4.94 (SD = 1.36), and 4.81 (SD = 1.5), respectively. No statistically significant differences between the baseline TLDR and OpenAI Curie/Davinci models were detected. The other two models, i.e., Pegasus-XSum and BART-SAMSum scored significantly lower in Informativeness and Quality. Our study demonstrated that we could effectively summarize scientific literature abstracts even with general AI-based text generation models such as OpenAI Curie and Davinci models. However, it should be noted that a higher variance was observed in the general models. Therefore, fine-tuning of the model is still recommended for practical use in the clinical environment.

Tip publikacije
Publikacija
In Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science, 13263, pp. 373-382
Primož Kocbek
Primož Kocbek
Doktorski študent

Moji raziskovalni interesi vključujejo statistične modele in metode strojnega učenja z aplikacijami v zdravstvu. Specifična področja, ki me zanimajo, vključujejo časovno analizo podatkov, interpretacijo napovednih modelov, stabilnost algoritmov, napredne metode strojnega učenja na masivnih podatkovjih, npr. globoke nevronske mreže.

Lucija Gosak
Lucija Gosak
Doktorski študent

Moji raziskovalni interesi so vključevanje mobilnih aplikacij v oskrbo kroničnih pacientov.

Kasandra Musović
Kasandra Musović
Doktorska študentka

Moji raziskovalni interesi skrb v izobraževanju v zdravstveni negi, na znanstvenih dokazih utemeljena zdravstvena nega ter raziskovalne metode.

Gregor Štiglic
Gregor Štiglic
Izredni profesor in predstojnik raziskovalnega inštituta

Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.

Sorodno