Interpreting influence of feature ranking in derivation of prediction models for screening questionnaires optimization

Abstrakt

Questionnaire based screening tests have been widely used in different fields ranging from healthcare and psychology to business environment. Espe-cially by deployment of such questionnaires in the online form it is now possible to collect large amounts of screening test data that can be used to study user char-acteristics and apply different data mining techniques to discover new patterns or build prediction models. We used a sample of 39775 complete depression, anxi-ety and stress scale questionnaires collected online. In practice such question-naires can be used to refer users to seek help from an advanced nurse practitioner specialized in mental health. Thus, modern technology enables healthcare work-ers to make clinical judgments based on evidence in advanced health assessment. Different data mining approaches were used to build prediction models and study user characteristics that might influence the prediction of screening test outcomes based on a limited number of questionnaire items. This study focuses on building prediction models to achieve high prediction performance by positioning of items using feature ranking. Additionally, we provide an insight into some characteris-tics of online screening test users using techniques to detect careless and insuffi-cient effort responding. Selection of smaller sets of items in screening tests can significantly reduce the time needed and workload for experts and lay population using the screening tests based on questionnaires. This paper also demonstrates the possibilities of using large survey datasets to provide guidelines that can serve experts in building screening tools of the next generation.

Tip publikacije
Publikacija
In 20th Industrial Conference on Data Mining ICDM 2020, Jul 21.-22., Amsterdam, pp. 67-78
Leona Cilar Budler
Leona Cilar Budler
Doktorantka

Moji raziskovalni interesi vključujejo področje duševnega zdravja, raziskovanje v zdravstveni negi in informatika v zdravstvu. Specifična področja, ki me zanimajo, vključujejo duševno zdravje mladostnikov, psihometično testiranje vprašalnikov, lokalizacijo vprašalnikov ter kvantitativno analizo podatkov.

Majda Pajnkihar, FAAN, FEANS
Majda Pajnkihar, FAAN, FEANS
Redna profesorica

Moji raziskovalni interesi primarno vključujejo področja pediatrične zdravstvene nege, raziskovanja v zdravstveni negi, teorij in konceptov v zdravstveni negi ter varnost in kakovost v zdravstveni negi.

Gregor Štiglic
Gregor Štiglic
Izredni profesor in predstojnik raziskovalnega inštituta

Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.