Relevance of automated generated short summaries of scientific abstract: use case scenario in healthcare

Image credit: IEEE

Abstrakt

The recent development and successful deployment of large pre-trained natural language models in few-shot and zero-shot scenarios enabled impressive results in different downstream tasks. One such task is abstractive text summarization combining understanding, information compression, and language generation, which might be of great potential in healthcare, where time is a premium. A potential real-world scenario is explored, where the relevance of extremely short summaries from the latest scientific literature is generated by state-of-the-art (SOTA) models and is evaluated by healthcare experts, and can be seen as support at the point of care. In a small-scale study, a baseline fine-tuned model (Semantic Scholar TLDR) was compared with three SOTA models (OpenAI Curie, OpenAI Davinci, and PEGASUS-XSum). Healthcare experts evaluated the abstracts and extremely short summaries considering the scenario and it was observed that in terms of relevance, the OpenAI models and Semantic Scholar TLDR model differed just slightly, i.e. OpenAI Curie model had the highest average score of 4.59 (SD=1.69), followed by with 4.58 (SD=1.58) and OpenAI Davinci with 4.48 (SD=1.87). On the other hand, the PEGASUS-XSum model’s relevance was significantly lower, with 4.01 (SD=1.81). A deeper analysis of selected short summaries has shown that some concepts are difficult to understand for AI models that still have difficulty to “understand”, which often results in uninformative or false facts. One should be aware that extreme summarization using AI-based approaches is still a relatively new field of research and the technology is still not ready to be used in clinical practice. Our small-sample study indicates that it could already support the healthcare experts in the decision-making process.

Tip publikacije
Publikacija
In 2022 IEEE 10th International Conference on Healthcare Informatics, Jun 11.-14., Rochester, Minnesota, USA, pp. 599-605
Gregor Štiglic
Gregor Štiglic
Izredni profesor in predstojnik raziskovalnega inštituta

Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.

Kasandra Musović
Kasandra Musović
Doktorska študentka

Moji raziskovalni interesi skrb v izobraževanju v zdravstveni negi, na znanstvenih dokazih utemeljena zdravstvena nega ter raziskovalne metode.

Lucija Gosak
Lucija Gosak
Doktorski študent

Moji raziskovalni interesi so vključevanje mobilnih aplikacij v oskrbo kroničnih pacientov.

Nino Fijačko
Nino Fijačko
Doktorski študent

Moji raziskovalni interesi vključujejo sodobnejše pedagoške pristope na različnih področjih zdravstva. Specifično raziskujem kako resne igre in igrifikacija vplivajo na raven fizioloških in psiholoških lastnosti posameznih oseb v različnih situacijah, kot je na primer kardiopulmonalno oživljanje.

Primož Kocbek
Primož Kocbek
Doktorski študent

Moji raziskovalni interesi vključujejo statistične modele in metode strojnega učenja z aplikacijami v zdravstvu. Specifična področja, ki me zanimajo, vključujejo časovno analizo podatkov, interpretacijo napovednih modelov, stabilnost algoritmov, napredne metode strojnega učenja na masivnih podatkovjih, npr. globoke nevronske mreže.