A Review of Mortality Risk Prediction Models in Smartphone Applications

Abstrakt

Healthcare professionals in healthcare systems need access to freely available, real-time, evidence-based mortality risk prediction smartphone applications to facilitate resource allocation. The objective of this study is to evaluate the quality of smartphone mobile health applications that include mortality prediction models, and corresponding information quality. We conducted a systematic review of commercially available smartphone applications in Google Play for Android, and iTunes for iOS smartphone applications. We performed initial screening, data extraction, and rated smartphone application quality using the Mobile Application Rating Scale: user version (uMARS). The information quality of smartphone applications was evaluated using two patient vignettes, representing low and high risk of mortality, based on critical care data from the Medical Information Mart for Intensive Care (MIMIC) III database. Out of 3051 evaluated smartphone applications, 33 met our final inclusion criteria. We identified 21 discrete mortality risk prediction models in smartphone applications. The most common mortality predicting models were Sequential Organ Failure Assessment (SOFA) (n = 15) and Acute Physiology and Clinical Health Assessment II (n = 13). The smartphone applications with the highest quality uMARS scores were Observation—NEWS 2 (4.64) for iOS smartphones, and MDCalc Medical Calculator (4.75) for Android smartphones. All SOFA-based smartphone applications provided consistent information quality with the original SOFA model for both the low and high-risk patient vignettes. We identified freely available, high-quality mortality risk prediction smartphone applications that can be used by healthcare professionals to make evidence-based decisions in critical care environments.

Tip publikacije
Publikacija
Journal of Medical Systems, 45(12), p. 107
Nino Fijačko
Nino Fijačko
Doktorski študent

Moji raziskovalni interesi vključujejo sodobnejše pedagoške pristope na različnih področjih zdravstva. Specifično raziskujem kako resne igre in igrifikacija vplivajo na raven fizioloških in psiholoških lastnosti posameznih oseb v različnih situacijah, kot je na primer kardiopulmonalno oživljanje.

Ruth Masterson Creber
Ruth Masterson Creber
Professor of Nursing
Lucija Gosak
Lucija Gosak
Doktorski študent

Moji raziskovalni interesi so vključevanje mobilnih aplikacij v oskrbo kroničnih pacientov.

Primož Kocbek
Primož Kocbek
Doktorski študent

Moji raziskovalni interesi vključujejo statistične modele in metode strojnega učenja z aplikacijami v zdravstvu. Specifična področja, ki me zanimajo, vključujejo časovno analizo podatkov, interpretacijo napovednih modelov, stabilnost algoritmov, napredne metode strojnega učenja na masivnih podatkovjih, npr. globoke nevronske mreže.

Leona Cilar Budler
Leona Cilar Budler
Doktorantka

Moji raziskovalni interesi vključujejo področje duševnega zdravja, raziskovanje v zdravstveni negi in informatika v zdravstvu. Specifična področja, ki me zanimajo, vključujejo duševno zdravje mladostnikov, psihometično testiranje vprašalnikov, lokalizacijo vprašalnikov ter kvantitativno analizo podatkov.

Gregor Štiglic
Gregor Štiglic
Izredni profesor in predstojnik raziskovalnega inštituta

Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.