Explaining artificial intelligence with visual analytics in healthcare

Image credit: Wiley

Abstrakt

To make predictions and explore large datasets, healthcare is increasingly applying advanced algorithms of artificial intelligence. However, to make well-considered and trustworthy decisions, healthcare professionals require ways to gain insights in these algorithms’ outputs. One approach is visual analytics, which integrates humans in decision-making through visualizations that facilitate interaction with algorithms. Although many visual analytics systems have been developed for healthcare, a clear overview of their explanation techniques is lacking. Therefore, we review 71 visual analytics systems for healthcare, and analyze how they explain advanced algorithms through visualization, interaction, shepherding, and direct explanation. Based on our analysis, we outline research opportunities and challenges to further guide the exciting rapprochement of visual analytics and healthcare.

Tip publikacije
Publikacija
WIREs Data Mining and Knowledge Discovery, 12(1), e1427
Jeroen Ooge
Jeroen Ooge
PhD Student
Gregor Štiglic
Gregor Štiglic
Izredni profesor in predstojnik raziskovalnega inštituta

Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.

Katrien Verbert
Katrien Verbert
Professor

Sorodno