Abstrakt
There is a need of ensuring machine learning models that are interpretable. Higher interpretability of the model means easier comprehension and explanation of future predictions for end-users. Further, interpretable machine learning models allow healthcare experts to make reasonable and data-driven decisions to provide personalized decisions that can ultimately lead to higher quality of service in healthcare. Generally, we can classify interpretability approaches in two groups where the first focuses on personalized interpretation (local interpretability) while the second summarizes prediction models on a population level (global interpretability). Alternatively, we can group interpretability methods into model-specific techniques, which are designed to interpret predictions generated by a specific model, such as a neural network, and model-agnostic approaches, which provide easy-to-understand explanations of predictions made by any machine learning model. Here, we give an overview of interpretability approaches and provide examples of practical interpretability of machine learning in different areas of healthcare, including prediction of health-related outcomes, optimizing treatments or improving the efficiency of screening for specific conditions. Further, we outline future directions for interpretable machine learning and highlight the importance of developing algorithmic solutions that can enable machine-learning driven decision making in high-stakes healthcare problems.
Publikacija
Scientific Reports, 10, p. 11981
Doktorski študent
Leon Kopitar je zaposlen kot višji raziskovalec na Fakulteti za zdravstvene vede, na članici Univerze v Mariboru. Na Univerzi v Mariboru, Fakulteti za elektrotehniko, računalništvo in informatiko opravlja doktorski študij Računalništva in informatike. Njegov raziskovalni interes vključuje aplikativnost metod strojnega učenja na področju zdravstva.
Doktorski študent
Moji raziskovalni interesi vključujejo statistične modele in metode strojnega učenja z aplikacijami v zdravstvu. Specifična področja, ki me zanimajo, vključujejo časovno analizo podatkov, interpretacijo napovednih modelov, stabilnost algoritmov, napredne metode strojnega učenja na masivnih podatkovjih, npr. globoke nevronske mreže.
Doktorantka
Moji raziskovalni interesi vključujejo področje duševnega zdravja, raziskovanje v zdravstveni negi in informatika v zdravstvu. Specifična področja, ki me zanimajo, vključujejo duševno zdravje mladostnikov, psihometično testiranje vprašalnikov, lokalizacijo vprašalnikov ter kvantitativno analizo podatkov.
Chair of Primary Care Research and Development
Izredni profesor in predstojnik raziskovalnega inštituta
Moji raziskovalni interesi vključujejo tehnike strojnega učenja z uporabo v zdravstvu. Specifična področja, ki me zanimajo, vključujejo razumljivost napovednih modelov, klasifikacija, ki temelji na človeški interakciji, stabilnost algoritmov za izbiro lastnosti, meta učenje in odkrivanje longitudinalnih pravil.